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While it is recognized that the heterogeneous particles in HIPS play the dual role of providing multiple
sites for craze initiation in the polystyrene (PS) matrix and allow the stabilization of the crazing process
through cavitation/fibrillation in the PB phase within the particle, the precise role of particle morphology
is not well understood or quantified. This work probes the micromechanics of uniaxial tensile defor-
mation and failure in rubber-toughened PS through axi-symmetric finite element representative volume
element (RVE) models that can guide the development of blends of optimal toughness. The RVE models
reveal the effect on craze morphology and toughness by various factors such as particle compliance,
particle morphology, particle fibrillation and particle volume fraction. The principal result of our study is
that fibrillation/cavitation of PB domains within the heterogeneous particle provides the basic key
ingredient to account for the micro- and macro-mechanics of HIPS.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The incorporation of a rubbery phase into a brittle (craze-able)
polymer matrix has long been recognized as a means to significantly
toughen the material. High impact polystyrene (HIPS) is one of the
most successful material systems making use of this approach. HIPS
was one of the first commercial polymers that were toughened by
compliant, micron-sized second-phase particles. The particles in
HIPS are heterogeneous, with a characteristic ‘‘salami’’ morphology.
The ‘‘salami’’ morphology consists typically of 80% volume fraction
of sub-micron sized polystyrene (PS) subinclusions within 20%
polybutadiene (PB), which is the topologically continuous phase
(Fig. 1) [1,2]. PB in the salami particles occurs in the form of thin
layers, typically of thickness 5–10 nm. The actual mechanism that
governs the toughening of HIPS was first identified by Bucknall
and Smith [3]. By stretching thin films (with thicknesses in the range
5–10 mm) of the blend, they found that macroscopic yielding was
accompanied by the formation of multiple crazes in PS around the
salami particles. Crazes are comprised of elongated voids and fibrils
of highly oriented, load bearing polymeric material that are aligned
in the direction of the local maximum principal stress. It is well
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known that crazes are both a manifestation of dilatational plasticity
as well as precursors to fracture, and hence control the toughness of
several nominally brittle glassy polymers such as PS, polymethyl-
methacrylate (PMMA) and styrene-acrylonitrile (SAN). Fig. 1(a)
shows a typical stress–strain curve for HIPS, along with a micrograph
showing the heterogeneous nature of the particle and multiple
crazing in the PS matrix.

The previously well-accepted notion that toughening in HIPS is
due to multiple crazing in the PS matrix, and that the role of the
particle is simply to act as a stress concentrator and provide
a multitude of preferential sites for crazing in the matrix, has been
a subject of serious critical thought over the last two decades. An
important early study [4], due to Bubeck et al., was based on real-
time SAXS experiments on commercially thick HIPS tensile impact
samples. Importantly, the use of SAXS technique overcame the
inherent limitation of electron microscopy studies where thin
specimens are needed. From the scattering measurements and
analysis, Bubeck et al. were able to estimate the total inelastic
strain, as well as the crazing strain. By subtracting the crazing strain
from the total inelastic strain, they determined the magnitude of
the inelastic strain due to non-crazing mechanisms, which in HIPS
is attributed mostly to particle cavitation and elastic/inelastic
bending of ligaments between cavitating particles. Bubeck et al.
found that the inelastic strain due to non-crazing mechanisms
exceeds the strain due to crazing (in many cases by about a factor of
2), and that the non-crazing inelastic strain precedes crazing. On
lines somewhat similar to Bubeck et al., Magalhaes and Borggreve
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Fig. 1. (a) The stress–strain response of HIPS (right) with particle volume fraction fp¼ 0.2, average particle size¼ 2.5 mm at a strain-rate¼ 1�10�4 s�1. Micrograph (left) reveals the
composite nature of the particle and crazing in the PS matrix (taken from Polymer, Vol. 36, 1995, pp. 2173–2180. 1995 Elsevier. Reprinted with permission of Elsevier) [1]. (b) TEM
micrograph of a thin HIPS section, prepared from a tensile specimen beyond yield (taken from Journal of Microscopy, Vol. 201, 2001, pp 221–229. 2001 Wiley-Blackwell. Reprinted
with permission of Wiley-Blackwell) [2].
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[5] used real-time SAXS on HIPS tensile specimens subjected to
quasi-static strain rates, and found that crazing accounts only for
25% of the total volume change in the specimens. TEM micrographs
showing patterns of deformation in thin HIPS films are shown in
Fig. 1(b) [2]; also see TEM micrographs from Cieslinski [6]. These
micrographs show that particle deformation is mainly accom-
plished through fibrillation of the thin PB layers between PS
subinclusions.

Recently, HIPS specimens were subjected to progressively
higher doses of g-radiation [7], which has the effect of increasing
the crosslink density in PB (thereby minimizing or eliminating
fibrillation), but has a negligible effect on PS. Increasing levels of
g-radiation were shown to result in increased yield and flow stress,
and reduced toughness, and thus highlighted the important role of
fibrillation on the toughening in HIPS.

To this date, very limited modeling studies have been done on
HIPS that can shed light on the toughening mechanisms, and in
particular on the role of particle morphology. Socrate et al. [8]
developed a micromechanical model for crazing using a cohesive
zone formulation, and applied their model to a preliminary study of
HIPS, in which the composite ‘‘salami’’ particle was represented by
its homogenized, elastic properties, and hence did not address the
role of particle morphology and particle cavitation on the defor-
mation and toughness of HIPS. Recently, Zairi et al. [9,10] have
modeled the overall constitutive stress–strain behavior of the
rubber-toughened polymers – PMMA and PS – using a viscoplastic
damage model within the Gurson–Tvergaard micromechanical
framework. While model predictions were in quantitative agree-
ment with experimental macroscopic response, the proposed
approach does not address the role of particle morphology on the
deformation and toughening of HIPS. The objective of our study is
to clarify and quantify the precise role of particle morphology on
the micromechanics and macromechanics of uniaxial tensile
deformation and failure in rubber-toughened PS. In particular, this
study seeks to investigate the role of particle compliance, particle
heterogeneity and particle cavitation/fibrillation.

2. Model

In order to investigate the local mechanisms that govern the
deformation and failure of HIPS, a micromechanical model that
adequately captures the particle morphology is proposed. The
definition of a micromechanical model requires two components:
(i) the geometric description of the representative volume element
(RVE) and, (ii) the constituent behavior of its three phases – the PS
matrix, the PS subinclusions within the particle, and the PB layers
within the particle.

Although limited findings of particle/matrix debonding in
experimental blends have been reported in the literature [11,12],
we note that due to the chemical grafting of the PB and PS phases
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during the manufacturing of HIPS, the interface between the HIPS
particle and the PS matrix is very strong and particle/matrix
debonding is not typically observed in commercial blends.
Accordingly, we neglect the possibility of particle/matrix decohe-
sion and idealize the interface as perfectly bonded. Generally
speaking, matrix–particle adhesion is critical for toughening in
HIPS, as it provides not only adequate stress transfer between the
particle and the matrix needed for initiation of multiple crazes in
the matrix, but also ensures the stable thickening of crazes between
any two particles.

2.1. Geometry of the RVE

Similar to other particle composites, micrographs of HIPS reveal
statistical distributions in several morphological features such as
particle size and shape, and spatial variations in inter-particle
spacing with possibility of particle clustering even in well-
dispersed systems. HIPS systems present additional complexity in
that the particles are themselves 2-phase composites: the volume
fraction and spatial arrangement of the PB and PS phase exhibit
some statistical variations between particles. The task of modeling
these complex features can be greatly simplified by selecting a RVE
for the material. In its simplest embodiment, this RVE contains
a single particle surrounded by PS matrix. The basic key interac-
tions with neighboring particles are simulated by imposing
appropriate periodic boundary conditions on the RVE model.

The one-particle RVE model used in our HIPS studies was
proposed by Socrate and Boyce [13], and is an axisymmetric
equivalent to the Voronoi tessellation of a Body Centered Cubic
(V-BCC) array of voids/particles. In simulations of porous PC, Soc-
rate and Boyce found that the numerical predictions of the
axisymmetric V-BCC model provide reasonable agreement with
experimental results and are superior to those provided by the
traditional axisymmetric Stacked Hexagonal Array (SHA) model,
especially at high void volume fractions and high triaxiality. Fig. 2
shows the deformed configuration of the axisymmetric V-BCC cell,
along with one of its periodic neighbors, which is identical to the
parent cell but rotated by 180� in the r–z plane. A characteristic
feature of this model is the staggered arrangement of particles in
the r–z plane, which is closer to the morphology of particle
composites, compared to the SHA model, in which the particles are
aligned in the equatorial plane. A notable drawback of the
axisymmetric V-BCC model is that it cannot correctly account for
transverse shear effects. However, despite this, it provides a judi-
cious computational route to modeling particle composites under
axisymmetric loading conditions. We note that in a recent study
[14] the staggered axisymmetric RVE employed in our study was
Fig. 2. Axisymmetric V-BCC cell in the deformed configuration, along with a periodic
neighbor.
shown to provide results in good agreement with those obtained
with a fully three-dimensional model, while affording increased
computational efficiency. The boundary conditions needed to
simulate the staggered arrangement of particles were given by
Tvergaard [15,16] in his study of cavity growth and interaction
between small and large voids, and also subsequently by others
[13,17,18].

Operationally, in our simulations the top plane of the RVE is
driven by an axial displacement history, uz(t)jB, that produces
a constant applied axial strain rate, _Ez, on the RVE. The axial reac-
tion force corresponding to node B, PzjB, is used to determine the
axial component of the macroscopic Cauchy stress, Sz, by

Szh
1
V

Z
x˛V

szzðxÞdV ¼ PzjB
p½R0 þ ur jF �

2 (1)

where p[R0þ urjF]2 is the average, deformed cross sectional area of
the RVE. The macroscopic axial strain, Ez, is calculated from the
height of the RVE in the deformed configuration, H, and the initial
RVE height, H0:
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�
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�
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In the RVE studies, the inelastic volumetric strain of the particle,
Ev(particle), and the matrix, Ev(matrix), are defined as:

EvðparticleÞ ¼ ln
�

1þ
ffib

V0

�
(4)

EvðmatrixÞ ¼ ln
�

1þ fcraze

V0

�
(5)

where ffib and fcraze represent respectively the volume of the
fibrillated PB domains and the crazed PS matrix.

The RVE topology of composites investigated in our studies can
be classified into two types – RVEs with homogeneous particles,
and RVEs with heterogeneous particles consisting of 70% PS sub-
inclusions within 30% topologically continuous PB. The particle size
is kept fixed at 1.5 mm for all RVEs. Models are developed for three
different particle volume fractions: fp¼ 0.08, 0.18, 0.28 by appro-
priately increasing the size of the RVE. In all cases, the initial aspect
ratio of the RVE is given by R0/H0¼1, and the macroscopic applied
tensile strain rate is _Ez ¼ 1� 10�3 s�1.

The geometry of the axisymmetric RVEs, for fp¼ 0.28, is shown
in Fig. 3. The RVE with the homogeneous particle (Fig. 3a) is used to
study the effect of particle compliance on the toughening of PS. The
RVE with the particle explicitly decomposed in PS and PB domains
(Fig. 3b) is used in two parallel studies: a study on the effects of
particle heterogeneity (where ‘‘no fibrillation’’ was allowed in the
PB domains), and a study on the effect of PB fibrillation. We note
that while the actual thickness of the PB phase in the particle is in
the range 5–10 nm, the PB element size is about 25 nm; meshing
considerations necessitated this approximation. RVE studies in this
work were performed using the finite element software ABAQUS�.

As can be seen from Fig. 3, our model studies use spherical
particles. We note that the particle shape affects the stress state
both in the PS matrix and within the particle itself. Since initiation
of particle cavitation and matrix crazing is stress-dependent, model



Fig. 3. Axisymmetric RVE geometry for the homogeneous particle and the heterogeneous particle. PS subinclusions in (b) are shown in white.
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predictions are expected to be dependent on particle shape [19].
However, we note that the particles in HIPS blends are approxi-
mately spherical, and small deviations from the equiaxial config-
uration have minor effects on the stress fields.

2.2. Constitutive model for the particle

For a parametric study on the effect of particle compliance on
toughness, the particle was modeled as linear elastic with shear
modulus, Gp, and bulk modulus, Kp. Table 1 indicates that in the
parametric study, Kp was kept equal to KPB¼ 1940 MPa (the bulk
modulus of PB), while Gp was progressively increased in factors of
10 from GPB¼ 0.62 MPa (the shear modulus of PB) to 620 MPa; the
elastic properties of PB were taken from Boyce et al. [20]. The
particle Young’s modulus, Ep and the Poisson’s ratio, np, are also
given in Table 1 for convenience. In addition to the parametric
study on particle compliance, we show results of a study in which
the salami particle was represented by its homogenized elastic
properties: Kp

H¼ 1940 MPa and Gp
H¼ 111 MPa, where the latter

estimate is obtained from Argon et al. [21].
For studies with an inhomogeneous particle topology, the

constitutive description of the particle is given in terms of the
response of the (non-crazeable) PS subinclusions, and the response
of the topologically continuous PB domain. The non-crazeable PS
within the particle is modeled as linear elastic with bulk modulus,
KPS, and shear modulus, GPS, given in Table 2 (e.g., [8]). PB is
considered to be a compressible, rubber-elastic material with
a constitutive representation that follows the framework originally
introduced by Arruda and Boyce [22]. The Cauchy stress, TN, reflects
the effects of network orientation:

TN ¼ J�1mr

ffiffiffiffi
N
p

lchain

L�1
�

lchainffiffiffiffi
N
p

�
devðBÞ þ KPBðJ � 1Þ: (6)

Here, mr is the initial hardening modulus taken to be equal to
GPB/3, N is the number of rigid molecular units between entan-
glements, J¼ det F (where F is the deformation gradient),
Table 1
Particle elastic properties used to investigate the role of particle compliance on the
deformation and toughness of rubber-toughened PS.

Kp (MPa) Gp (MPa) Ep (MPa) np

1940 0.62 1.86 0.4998
1940 6.2 18.58 0.4984
1940 62 184.04 0.4842
1940 620 1680.93 0.3556
Kp

H¼ 1940 Gp
H¼ 111 326.77 0.4719
F ¼ J�1=3F; B ¼ FFT; and lchain ¼ ðtr½B�=3Þ1=2: L�1 is the inverse
Langevin function, where L(b)¼ coth(b)� 1/b and
b ¼ L�1ðlchain=

ffiffiffiffi
N
p
Þ: The inverse Langevin function becomes

unbounded as the effective chain stretch lchain approaches the
locking stretch,

ffiffiffiffi
N
p

, and hence accounts for finite chain extensibility
as well as the strong orientation hardening observed in elastomers
at large strains. Fibrillation of the PB phase is a result of the
formation of nano-scale voids, which effectively eliminate the
resistance of PB to volumetric expansion. Before fibrillation, KPB/
mr¼ 9375 is governed by the isotropic elastic properties of bulk PB.
After fibrillation, we take KPB/mr¼ 1, i.e., we reduce the bulk stiff-
ness of the fibrillated PB by about 4 orders of magnitude; the non-
zero value of KPB after fibrillation provides numerical stability to the
fibrillated finite element. Fibrillation is taken to occur when the
local hydrostatic stresses reaches a critical value, sfib

sh � sfib (7)

Gent and coworkers [23,24] have estimated that failure in bulk
rubber specimens occurs at a critical hydrostatic stress of w5E/6
(where E is the small strain Young’s modulus of rubber). Since
EPB¼ 1.86 MPa [20], the bulk fibrillation stress in PB is estimated to
be sfib¼ 1.5 MPa. A representative value for elastomers of N¼ 25 is
used for PB. The properties of PB used in this work are indicated in
Table 2.

2.3. Constitutive model for the PS matrix

Since the PS matrix deforms inelastically by crazing, the
constitutive characterization of the PS matrix requires modeling of
the three stages of crazing – initiation, growth, and breakdown. The
physics of crazing has been extensively discussed in innumerous
publications, and summarized in several excellent reviews [25–30].
Detailed, numerical studies that incorporate the physics of crazing
within a cohesive zone framework have been performed by Van der
Giessen and coworkers [31–33] to study Mode I crack-tip plasticity,
and by Socrate et al. [8] to investigate matrix crazing in HIPS where
the heterogeneous salami particle was modeled by its effective
elastic properties. Gearing and Anand [34] developed a macro-
scopic continuum model for both crazing and shear yielding, and
Table 2
Material properties of the constituents of the inhomogeneous particle.

PS subinclusions PB domains

KPS (MPa) GPS (MPa) KPB (MPa) GPB (MPa) mr (MPa) N sfib (MPa)

2500 1150 1940 0.62 0.21 25 1.5



Fig. 4. Macroscopic response for RVE with PB particle Gp¼ 0.62 MPa (fp¼ 0.28).
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applied it to numerical studies on notched specimens. In a recent
study on the effect of inelastic interactions of crazing and shear
yielding on the toughness of laminated polymeric composites,
Sharma et al. [35] extended the micromechanical cohesive zone
craze model of Socrate et al. to a continuum craze model that
retains the critical micromechanical features of the original model,
while introducing spatial flexibility to the crazing process.1 The
crazing model for the PS matrix is based on the work of Sharma
et al., and the material properties are taken from [27,36].

3. Results

The objective of the finite element RVE studies is to understand
the role of particle morphology on the deformation and toughness
of HIPS. This goal is accomplished by investigating the effects of:

� particle compliance through a parametric study on homoge-
neous particles, whose compliances are systematically varied.
� particle heterogeneity by comparing the response of the RVE

with homogenized particle vs. heterogeneous particle (with no
fibrillation)
� particle fibrillation by comparing the response of the RVE with

a non-fibrillating heterogeneous particle vs. a fibrillating
particle.
3.1. Study on compliant, homogeneous particles

In order to study the effect of particle compliance on the
deformation and toughness of the composite, a parametric study
was conducted on RVEs with fp¼ 0.28, wherein the particle shear
modulus was systematically varied, as shown in Table 1.

3.1.1. Detailed analysis for PB particle
Here, we perform a detailed investigation of the macroscopic

response of the RVE with a PB particle (Gp¼ 0.62 MPa) and the
underlying features of the deformation. Fig. 4 shows the macro-
scopic response of the RVE with a PB particle. Fig. 5 shows contour
plots of craze nucleation ‘‘damage’’ DðtÞh

R t
0 dt0=tiðt0Þ; where ti is
1 While the model of Socrate et al. [8] considered only craze initiation and
growth, Sharma et al. [35] also incorporated craze breakdown into their craze
model.
craze initiation time associated with a fixed stress state [35]. A
contour level of D¼ 1 indicates a nucleated craze; D< 1 indicates
no crazing. Contour plots are presented for each of the macroscopic
strain levels marked (a)–(d) on the Sz–Ez plot of Fig. 4(A).

Due to the stress concentration in PS matrix introduced by the
compliant PB particle, crazing initiates at the particle–matrix
interface at the equator (as shown in Fig. 5(a)), and results in
deviation from linearity of the Sz–Ez response. The softening of the
craze element after nucleation [35] provides a stress concentration
for the lateral propagation of the craze. The macroscopic stress Sz

continues to rise at points (b) and (c), despite the progression of
crazing in the PS matrix, due to increasing levels of axial stress in
the particle. At point (c), Sz reaches its peak value. Both the local
axial stress and the local hydrostatic stress in the particle reach
their peak value of y36 MPa, with a slightly higher stress of
y38 MPa at the equator, adjacent to the interface. At point (c), the
craze has fully bridged the ligament between nearby particles.
Between points (c) and (d), Sz drops due to crazing along the
particle, relieving the high axial stress in the particle. Contour plots
at points (c) and (d) show large distortions in particle elements
close to the interface, at the equator due to the extensive opening of
the adjoining craze element.

In view of the large stresses in the particle at point (c)
mentioned above, the particle is likely to undergo degradation/
cavitation, particularly at the region adjoining the equatorial craze.
Hence, the Sz–Ez response beyond (c) is unrealistic. The localized
Fig. 5. Contour plots of the craze profile for Gp¼ 0.62 MPa (corresponding to Fig. 4).



Fig. 6. The macroscopic RVE response for particle volume fraction of fp¼ 0.28, as a function of particle shear modulus Gp.

Fig. 7. Comparison of the contour plots, corresponding to Fig. 6, of the craze profile for Gp¼ 6.2, 62, 620 MPa at an axial strain Ez¼ 0.067.
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nature of crazing in conjunction with the high stresses in the
particle would lead to loss of structural integrity of the RVE at
Ez� 0.067.

3.1.2. Discussion of parametric study on compliant, homogeneous
particles

Fig. 6(A) and (B) respectively shows the evolution of the
macroscopic true axial stress Sz and the macroscopic true volu-
metric strain Ev, with the macroscopic true axial strain Ez. The Sz–Ez

responses for composites corresponding to compliant particles
with Gp¼ 0.62, 6.2, 62 MPa exhibit an initial linear elastic behavior,
followed by departure from linearity and a non-linear rise to a peak
stress, and finally followed by softening. The notable absence of
a non-linear rise to peak stress for the case Gp¼ 620 MPa is a result
of delayed craze initiation in the matrix,2 which allows a linear rise
in particle axial stress with Ez. Craze initiation at Ez¼ 0.012 is fol-
lowed by rapid craze propagation that relieves the high axial stress
in the particle for the Gp¼ 620 MPa case, resulting in a softening
macroscopic behavior immediately after craze initiation (see
Fig. 6(A)). The Ev–Ez curves show a monotonic increase in Ev for all
composites. Small differences in the magnitude of Ev (at a fixed Ez)
indicate that the amount of axial deformation that is accommo-
dated by particle shearing increases slightly with increasing
particle compliance.
2 Based on Goodier’s solution, Boyce et al. [20] have given se/sN¼ 1.730 and sh/
sN¼ 0.735 for PB particle within a PS matrix in an infinite body subjected to a far
field uniaxial stress sN. Here se and sh represent the von-Mises stress and the
hydrostatic stress in the matrix just outside the particle at the equator. For a less
compliant particle with Kp¼ 2880 MPa and Gp¼ 880 MPa, we have se/sN¼ 1.130
and sh/sN¼ 0.407. While these values are not exactly true for our case of a periodic
RVE with a given volume fraction of particles, they qualitatively show that with
decreasing particle compliance (relative to the PS matrix), the stress concentration,
in the matrix just outside the particle at the equator, decreases; this delays the
initiation of crazes for the less compliant particles.
Fig. 7 shows the craze morphology for RVEs with particle stiff-
ness Gp¼ 6.2, 62, 620 MPa, and can be compared with the craze
morphology for the RVE with PB particle shown in Fig. 5. A char-
acteristic feature of the craze morphology for these RVEs is the
process of crazing around the circumference of the particle, in order
to relieve the axial stress build-up in the particle. The crazing,
particularly in Fig. 7(b) and (c), shows very diffused and unrealistic
crazing, because the equatorial stress concentration is diminished
as the compliance of the particle approaches the compliance of the
matrix. The results of this study provide a micromechanical
explanation of the low toughening potency of homogeneous PB
particles. TEM micrographs of homogeneous PB particles [37] show
that the elongation of the particle in the direction of the tensile load
is accompanied by an equatorial contraction resulting in the
debonding of the particle from the matrix. The large voids formed
as a result of debonding result in early failure of the composite. In
our study, particle–matrix compatibility prevents debonding, with
the consequence that unrealistic crazing occurs in the PS matrix to
accommodate the deformation.
3.2. Response of RVE with heterogeneous particle (no fibrillation)

To investigate the role of particle heterogeneity on the micro-
and macro-mechanics of HIPS, the particle is modeled as a 2-phase
composite comprising PS subinclusions and PB. Fibrillation in the
PB domains is suppressed. Fig. 8 shows the Sz–Ez and Ev–Ez

response, and Fig. 9 shows corresponding contour plots for the
craze profile. Crazing initiates in the matrix at point (a) (Ez¼ 0.01)
adjacent to the PB region, a feature that is seen often in thin-film
micrographs. The initial low stiffness of the PB regions induces
a local stress concentration in the matrix and provides preferential
sites for crazing in the PS matrix. At point (b) (Ez¼ 0.045), which is
associated with the macroscopic yield, a craze has spanned the net
section of the RVE. More realistic craze patterns are predicted,
compared to the studies in previous sections, in that crazes tend to



Fig. 8. The macroscopic RVE response and contour plots of the craze profile for particle volume fraction of fp¼ 0.28. The particle is modeled as a 2-phase system, but with no
fibrillation in the PB domains.
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initiate adjacent to PB regions in the particle. The significant
difference in volumetric compliance between the (crazeable) PS
matrix and the (non-fibrillating) particle generates an inherent
incompatibility between the radial stretches of matrix and particle.
The PS matrix accommodates the applied axial stretch by inelastic
(crazing) deformation at negligible radial stretch. On the other
hand, the particle cannot accommodate a comparable axial stretch
without a significant reduction in radius. The enforced radial
compatibility between the particle and matrix domains limits the
axial deformation of the particle.

It is energetically more favorable for the axial stretch to be
almost entirely accommodated by the PS matrix through perva-
sive crazing, as well as crazing along the particle circumference. It
is not surprising, therefore, that Ev(particle) y 0 (see Fig. 8(B)) for
the non-fibrillating particle (as well as for homogeneous/
homogenized particles studied in previous sections). At point (c)
(Ez¼ 0.134), PS matrix elements have met the craze breakdown
condition adjacent to the pole of the particle, resulting in crack
initiation in the matrix. Pervasive and unrealistic crazing is seen in
the matrix. It is noted that the post-yield softening behavior is an
indication of instability in the Sz–Ez response, and that in reality
should lead to localization of deformation and rapid failure after
the peak stress is reached. Results of this study indicate that
particle heterogeneity is a key feature to generating multiple
Fig. 9. Contour plots of the craze profile (corresponding to Fig. 8) for particle volume
fraction of fp¼ 0.28. The particle is modeled as a 2-phase system, but with no fibril-
lation in the PB domains.
crazes from a particle, but it alone cannot explain the macroscopic
response of HIPS and, in particular, the experimentally observed
craze profile.
3.3. Response of RVE with heterogeneous particle (with fibrillation)

In this study, the additional feature of fibrillation of PB domains
is incorporated in the investigation of the effects of heterogeneous
particles. The predicted Sz–Ez and Ev–Ez responses are shown in
Fig. 10 and capture the typical macroscopic response of HIPS. The
predicted Ev–Ez response (Fig. 10(B)), displays a slope of nearly
unity reflecting the very limited RVE lateral contraction during
tensile loading. This prediction is consistent with creep experi-
ments on HIPS [38], as well as with data by G’Sell et al. [39]. In line
with the SAXS results [4,5], a substantial amount of the total
volumetric strain is accommodated by non-crazing mechanisms,
i.e., by particle cavitation. However, in contrast to the these
experimental findings, model predictions indicate that volume
change due to crazing is predominant. This discrepancy can be
probably ascribed to the meshing of the PB domains, where an
element thicknesses of about 25 nm was used, while the actual
thickness of PB domains is in the 5–10 nm range. It is worth noting
that Ev–Ez behavior is well predicted for all particle morphologies
considered in our studies: the dilatant nature of crazing always
results in negligible lateral contraction of the RVE; however, models
accounting for particle fibrillation can satisfy compatibility
constraints between particle and matrix without introducing
debonding through interfacial crazing.

At point (a) (Ez¼ 0.002), fibrillation in the particle can be seen in
the contour plots of Fig.11. Crazing in the matrix initiates at point (b)
(Ez¼ 0.008). It is noted that in our previous studies, crazing initiated
at Ez¼ 0.01. This highlights the potential role of fibrillation in the PB
domains as a source for craze nucleation in the PS matrix: PB
fibrillation allows crazing to occur earlier by providing local stress
concentrations in the matrix. At point (c) (Ez¼ 0.022) associated
with peak Sz, crazes begin to extend from one particle to another. At
point (d) (Ez¼ 0.1), crazes bridge the inter-particle ligaments and
thicken in the local, maximum principal stress direction. Craze
breakdown at point (e) (Ez¼ 0.294) results in crack initiation in the
matrix. Between points (e) and (f) (Ez¼ 0.35), Sz decreases as the
matrix cracks progressively due to craze breakdown.

Comparison of the macroscopic response and the contour plots
for heterogeneous particle RVEs with and without fibrillation,



Fig. 11. Contour plots of fibrillation in PB (left), and craze profile (right) corresponding
to Fig. 10.

Fig. 10. Macroscopic RVE response (left) for particle volume fraction fp¼ 0.28. The particle is modeled as a 2-phase system, with fibrillation in the PB domains.
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clarifies the role of fibrillation in the deformation and toughening
of HIPS. First, comparing Fig. 8 with Fig. 10, we note that in the
absence of fibrillation the macroscopic stress required to initiate
crazes, as well as the macroscopic yield, is higher compared to the
case where the particle fibrillates. The former exhibits softening
beyond the peak stress, while the latter shows a slightly hardening
behavior. Typical experimental stress–strain curves for HIPS
(Fig. 1(a)) are consistent with predictions of the RVE model with
particle fibrillation. Second, the absence of fibrillation renders
Ev(particle) y 0, which is not in line with the SAXS experiments [4,5].
When the particle is allowed to fibrillate, a substantial amount of
inelastic volumetric strain is accommodated by the particle. Phys-
ically, the fibrillating particle is more compliant than the non-
fibrillating particle, allowing an easy accommodation of axial
stretch in the particle; this eliminates the unrealistic, pervasive
crazing seen for the non-fibrillating particle models. The conse-
quent reduced rate of craze opening in the PS matrix results in
delayed craze breakdown (compared to the non-fibrillating case)
and hence a tougher composite. A comparison of craze contour
plots for the non-fibrillating vs. the fibrillating case indicates
a more realistic (see, e.g., Fig. 1) craze pattern for the latter.

3.4. Effect of particle volume fraction

Fig. 12(A) shows the Sz–Ez behavior of RVEs with fibrillating
particles, as a function of particle volume fraction fp, at fixed
particle size. The macroscopic yield and flow stress are predicted to
increase with decreasing fp. Cases with higher particle volume
fraction (fp¼ 0.18 and fp¼ 0.28) show enhanced ductility as
compared to the low volume fraction case (fp¼ 0.08). These trends
are broadly consistent with experimental results of Correa and de
Sousa [40]. Fig. 12(B) shows the predicted Ev(particle)–Ez response as
a function of fp. While the overall volume change is independent of
fp, the volumetric strain contributions of matrix and particle change
with fp. In particular, with increasing fp, Ev(particle) increases (and
Ev(matrix) decreases), thereby lessening the accommodation of axial
strain by craze opening. This results in delayed craze breakdown
and delayed macroscopic failure in HIPS. The contour plots for craze
damage at Ez¼ 0.144, shown in Fig. 13, indicate a more localized
pattern of crazing for the case fp¼ 0.08.

4. Summary and conclusions

The objective of this work was to investigate the role of particle
morphology on the deformation and toughness of HIPS. To this end,



Fig. 13. Craze damage contour plots, at Ez¼ 0.144, for (a) fp¼ 0.08, (b) fp¼ 0.18, and (c)
fp¼ 0.28.

Fig. 12. (A) & (B) The predicted effect of volume fraction on the macroscopic deformation and toughness of HIPS.
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a one-particle axisymmetric RVE model [11] was used to inde-
pendently study the effect of the following factors: (a) particle
compliance, (b) particle heterogeneity, and (c) particle fibrillation.

To study the effect of particle compliance, a parametric study
was conducted in which the shear modulus was systematically
increased, starting from the shear modulus of neat PB. The study
provided a micromechanical interpretation for the experimental
finding [37] that homogeneous, compliant PB particles do not
toughen PS. Next, to investigate the role of particle heterogeneity,
both the PB and the PS phases of the particle were modeled, but the
fibrillation of the PB domains was suppressed. The macroscopic
stress–strain behavior predicted from this study showed unrea-
sonably large yield stresses, and a softening behavior not consistent
with experimental observations on HIPS. Further, the model pre-
dicted pervasive and unrealistic crazing in the PS matrix, although
the craze patterns for the heterogeneous particles (for small
strains) were superior, compared to the predicted craze patterns for
the homogeneous/homogenized particle. An important conclusion
of this study was that particle heterogeneity is an important
ingredient in initiating multiple crazes from a particle, but it alone
cannot adequately explain the deformation and toughness of HIPS,
since it ultimately leads to unrealistic, pervasive crazing.

Finally, the PB domains in the heterogeneous ‘‘salami’’ particles
were allowed to fibrillate. Encouragingly, the predicted Sz–Ez

response is well in line with experiments. The substantial volume
change in the particles is consistent with the SAXS experiments
[4,5], as well as numerous TEM micrographs that show fibrillation
in the particle. These TEM micrographs show that the initiated
crazes in the PS matrix almost invariably adjoin fibrillated regions
of the particle. This feature is mirrored by model predictions.
Increasing particle volume fraction improves the ductility, and is
associated with an increase in Ev(particle) for a given macroscopic
axial strain. The central conclusion of this work is that both particle
heterogeneity and particle fibrillation are necessary to account for
the deformation and toughness of HIPS.
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